$\qquad$

## Lesson 8: Using If-Then Moves in Solving Equations

Exit Ticket

Mrs. Canale's class is selling frozen pizzas to earn money for a field trip. For every pizza sold, the class makes $\$ 5.35$. They have already earned $\$ 182.90$ toward their $\$ 750$ goal. How many more pizzas must they sell to earn $\$ 750$ ? Solve this problem first by using an arithmetic approach, then by using an algebraic approach. Compare the calculations you made using each approach.

## Exit Ticket Sample Solutions

Mrs. Canale's class is selling frozen pizzas to earn money for a field trip. For every pizza sold, the class makes $\$ 5.35$.
They have already earned $\$ 182$. 90 , but they need $\$ 750$. How many more pizzas must they sell to earn $\$ 750$ ? Solve this problem first by using an arithmetic approach, then by using an algebraic approach. Compare the calculations you made using each approach.

Arithmetic Approach:
Amount of money needed: $750-182.90=567.10$
Number of pizzas needed: $567.10 \div 5.35=106$
If the class wants to earn a total of \$750, then they must sell 106 more pizzas.

Algebraic Approach:
Let $x$ represent the number of additional pizzas they need to sell.

If the class wants to earn \$750, then they must sell 106 more pizzas.
Both approaches subtract 182.90 from 750 to get 567.10 . Dividing by 5.35 is the same as multiplying by $\frac{1}{5.35}$. Both result in 106 more pizzas that the class needs to sell.

## Problem Set Sample Solutions

Write and solve an equation for each problem.

1. The perimeter of a rectangle is $\mathbf{3 0}$ inches. If its length is three times its width, find the dimensions.

The width of the rectangle: $w$ inches
The length of the rectangle: $3 w$ inches
Perimeter $=2($ length + width $)$

$$
\begin{aligned}
2(w+3 w) & =30 \\
2(4 w) & =30 \\
8 w & =30 \\
\left(\frac{1}{8}\right)(8 w) & =\left(\frac{1}{8}\right)(30) \\
w & =3 \frac{3}{4}
\end{aligned}
$$

OR
$w$

$$
\begin{array}{r}
2(w+3 w)=30 \\
(w+3 w)=15
\end{array}
$$

$$
4 w=15
$$

$3 w$

$$
w=3 \frac{3}{4}
$$

The width is $3 \frac{3}{4}$ inches.
The length is (3) $\left(3 \frac{3}{4} \mathrm{in}.\right)=(3)\left(\frac{15}{4} \mathrm{in}.\right)=11 \frac{1}{4} \mathrm{in}$.

$$
\begin{aligned}
& 5.35 x+182.90=750 \quad 5.35 x+182.90=750 \\
& 5.35 x+182.90-182.90=750-182.90 \\
& 5.35 x+0=567.10 \\
& \left(\frac{1}{5.35}\right)(5.35 x)=\left(\frac{1}{5.35}\right)(567.10) \\
& x=106 \\
& \text { OR } \\
& 100(5.35 x+182.90)=100(750) \\
& 535 x+18290=75000 \\
& 535 x+18290-18290=75000-18290 \\
& \left(\frac{1}{535}\right)(535 x)=\left(\frac{1}{535}\right)(56710) \\
& x=106
\end{aligned}
$$

